千彩手写识别系统(手写识别系统怎么安装)2018-08-30 09:33程序员小新人学习
手写数字识别算法的设计与实现
本文使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。这是本人的本科毕业论文课题,当然,这个也是机器学习的基本问题。本博文不会以论文的形式展现,而是以编程实战完成机器学习项目的角度去描述。
项目要求:本文主要解决的问题是手写数字识别,最终要完成一个识别系统。
设计识别率高的算法,实现快速识别的系统。
1 LeNet-5模型的介绍
本文实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:
这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。
LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。
LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(55),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。
第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个2828的神经元阵列,其中每个神经元负责从55的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6(55+1)=156个,每个像素点都是由上层55=25个像素点和1个阈值连接计算所得,共2828156=122304个连接。
S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-pooling,LeNet百思特网-5采用的是mean-pooling,即取nn区域内像素的均值。C1通过22的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的22个像素和1个阈值相连,共6(22+1)1414=5880个连接。
S2层和C3层的连接比较复杂。C3卷积层是由16个大小为1010的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为55)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。此处卷积核大小为55,所以学习参数共有6(355+1)+9(455+1)+1(655+1)=1516个参数。而图像大小为2828,因此共有151600个连接。
S4层是对C3层进行的降采样,与S2同理,学习参数有161+16=32个,同时共有16(22+1)55=2000个连接。
C5层是由120个大小为11的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120(1625+1)=48120个。
F6是与C5全连接的84个神经元,所以共有84(120+1)=10164个学习参数。
卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。
2 手写数字识别算法模型的构建
2.1 各层设计
有了第一节的基础知识,在这基础上,进行完善和改进。
输入层设计
输入为2828的矩阵,而不是向量。
激活函数的选取
Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。
ReLU的表达式:
卷积层设计
本文设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为55。
降采样层
本文降采样层的pooling方式是max-pooling,大小为22。
输出层设计
输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:
2.2 网络模型的总体结构
其实,本文网络的构建,参考自TensorFlow的手写数字识别的官方教程的,读者有兴趣也可以详细阅读。
2.3 编程实现算法
本文使用Python,调用TensorFlow的api完成手写数字识别的算法。
注:本文程序运行环境是:Win10,python3.5.2。当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
“””
Created on Fri Feb 17 19:50:49 2017
@author: Yonghao Huang
“””
#import modules
import numpy as np
import matplotlib.pyplot as plt
import 百思特网tensorflow as tf
import time
from datetime import timedelta
import math
from tensorflow.examples.tutorials.mnist import input_data
def new_weights(shape):
return tf.Variable(tf.truncated_normal(shape,stddev=0.05))
def new_biases(length):
return tf.Variable(tf.constant(0.1,shape=length))
def conv2d(x,W):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding=’SAME’)
def max_pool_2x2(inputx):
return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding=’SAME’)
#import data
data = input_data.read_data_sets(“./data”, one_hot=True) # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2
print(“Size of:”)
print(“–Training-set:\t\t{}”.format(len(data.train.labels)))
print(“–Testing-set:\t\t{}”.format(len(data.test.labels)))
print(“–Validation-set:\t\t{}”.format(len(data.validation.labels)))
data.test.cls = np.argmax(data.test.labels,axis=1) # show the real test labels: [7 2 1 …, 4 5 6], 10000values
x = tf.placeholder(“float”,shape=[None,784],name=’x’)
x_image = tf.reshape(x,[-1,28,28,1])
y_true = tf.placeholder(“float”,shape=[None,10],name=’y_true’)
y_true_cls = tf.argmax(y_true,dimension=1)
# Conv 1
layer_conv1 = {“weights”:new_weights([5,5,1,32]),
“biases”:new_biases([32])}
h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1[“weights”])+layer_conv1[“biases”])
h_pool1 = max_pool_2x2(h_conv1)
# Conv 2
layer_conv2 = {“weights”:new_weights([5,5,32,64]),
“biases”:new_biases([64])}
h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2[“weights”])+layer_conv2[“biases”])
h_pool2 = max_pool_2x2(h_conv2)
# Full-connected layer 1
fc1_layer = {“weights”:new_weights([7*7*64,1024]),
“biases”:new_biases([1024])}
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer[“weights”])+fc1_layer[“biases”])
# Droupout Layer
keep_prob = tf.placeholder(“float”)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
# Full-connected layer 2
fc2_layer = {“weights”:new_weights([1024,10]),
“biases”:new_weights([10])}
# Predicted class
y_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer[“weights”])+fc2_layer[“biases”]) # The output is like [0 0 1 0 0 0 0 0 0 0]
y_pred_cls = tf.argmax(y_pred,dimension=1) # Show the real predict number like ‘2’
# cost function to be optimized
cross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred))
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)
# Performance Measures
correct_prediction = tf.equal(y_pred_cls,y_true_cls)
accuracy = tf.reduce_mean(tf.cast(correct_prediction,”float”))
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
train_batch_size = 50
def optimize(num_iterations):
total_iterations=0
start_time = time.time()
for i in range(total_iterations,total_iterations+num_iterations):
x_batch,y_true_batch = data.train.next_batch(train_batch_size)
feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5}
feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0}
sess.run(optimizer,feed_dict=feed_dict_train_op)
# Print status every 100 iterations.
if i%100==0:
# Calculate the accuracy on the training-set.
acc = sess.run(accuracy,feed_dict=feed_dict_train)
# Message for printing.
msg = “Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}”
# Print it.
print(msg.format(i+1,acc))
# Update the total number of iterations performed
total_iterations += num_iterations
# Ending time
end_time = time.time()
# Difference between start and end_times.
time_dif = end_time-start_time
# Print the time-usage
print(“Time usage:”+str(timedelta(seconds=int(round(time_dif)))))
test_batch_size = 256
def print_test_accuracy():
# Number of images in the test-set.
num_test = len(data.test.images)
cls_pred = np.zeros(shape=num_test,dtype=np.int)
i = 0
while i < num_test:
# The ending index for the next batch is denoted j.
j = min(i+test_batch_size,num_test)
# Get the images from the test-set between index i and j
images = data.test.images[i:j, :]
# Get the associated labels
labels = data.test.labels[i:j, :]
# Create a feed-dict with these images and labels.
feed_dict={x:images,y_true百思特网:labels,keep_prob:1.0}
# Calculate the predicted class using Tensorflow.
cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict)
# Set the start-index for the next batch to the
# end-index of the current batch
i = j
cls_true = data.test.cls
correct = (cls_true==cls_pred)
correct_sum = correct.sum()
acc = float(correct_sum) / num_test
# Print the accuracy
msg = “Accuracy on Test-Set: {0:.1%} ({1}/{2})”
print(msg.format(acc,correct_sum,num_test))
# Performance after 10000 optimization iterations
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
运行结果显示:测试集中准确率大概为99.2%。
我还写了一些辅助函数,可以查看部分识别错误的图片,
还可以查看混淆矩阵,
2.3 实现手写识别系统
最后,将训练好的参数保存,封装进一个GUI界面中,形成一个手写识别系统。
系统中还添加了一点图像预处理的操作,比如灰度化,图像信息的归一化等,更贴近实际应用。
系统可进行快速识别,如下图
3 总结
本文实现的系统其实是基于卷积神经网络的手写数字识别系统。该系统能快速实现手写数字识别,成功识别率高。缺点:只能正确识别单个数字,图像预处理还不够,没有进行图像分割,读者也可以自行添加,进行完善。
4 收获
本人之前的本科期间,虽然努力学习高数、线性代数和概率论,但是没有认真学习过机器学习,本人是2017年才开始系统学习机器学习相关知识,而且本科毕业论文也选择了相关的课题,虽然比较基础,但是认真完成后,有一种学以致用的满足感,同时也激励着我进行更深入的理论学习和实践探讨,与所有读者共勉。
==================================
2018年5月13日更新
源码分享链接:
https://pan.baidu.com/s/1BNlifR3DvIvTO5qkOTTpsQ
========================================
2018年6月6日更新更新!!
python(TensorFlow)实现手写字符识别
此处的“手写字符”,其实指的是notMNIST数据库中的手写字符,其实和MNIST数据库是一样的。这里实现手写字符识别,主要是展示TensorFlow框架的可拓展性很强,具体来说,就是可以通过改动少部分的代码,从而实现一个新的识别功能。
NotMnist数据库
这个数据库和MNIST数据库基本一样,只是把10个数字换成了10个字母,即:A,B,C,D,E,F,G,H,I,J,K
当然,这个数据库的识别难度大一些,因为数据噪声更多一些,详情读者可以搜一搜了解一下。
实战
将NotMNIST数据库下载以后,放在本博文上述的网络中,基本不需要修改代码,直接训练,即可得到一个能识别字符的网络模型。
最后在测试集中的准确率,比MNIST的会低一些,大概为96%左右。
本文也将训练好的网络模型封装在和上述系统相似的GUI系统中,
识别效果还可以!
同样,将卷积卷积层可视化。
结语
TensorFlow框架可拓展性很强,只要设计好了网络,就能很容易的实现出来;同时,使用基本的CNN识别整体架构也是大同小异的,很多识别任务是通用的。当然,在具体的实践中需要得到接近完美的效果,还是要下很大功夫的!努力学习吧,加油!
(如果你/您有什么有趣的想法,可以在下面留言,如果我也感兴趣同时又有时间的话,我会尝试做一做,^_^)
24口光口网络交换机(24口光口网络交换机功率)
如今,千兆交换机作为网络连接的主要设备,在网络建设中扮演着越来越重要的角色,被广泛应用于企业网络中,因此选择合适的千兆交换机尤为重要。目前,市面上存在众多适用于中小型企业的千兆交换机,例如飞速(FS)(0)人阅读时间:2024-07-01卡扣式cpu风扇怎么拆 散热器卡扣太难拆了
cpu风扇怎么拆下来(卡扣式cpu风扇怎么拆)021-0百思特网8-13 23:31江渚小阁笔记本电脑用的时间长了,CPU风扇的出风口会沾上灰尘;如果所处的环境灰尘较多的话,风扇口会积很厚的灰尘,甚至(0)人阅读时间:2024-07-01svn密码找回的方法(svn记住密码)
TortoiseSVN算是用的比较多的SVN工具了,当然现在也不少人用GIT了。最近换个电脑,SVN密码忘了,不想麻烦管理员了,自己用了TortoiseSVN Password Decrypter工具(0)人阅读时间:2024-07-01游戏体验小助手 游戏体验小助手野外生存
网游小助手(游戏体验小助手)到游戏修改器和插件,玩家们第一反应要么就是盗版,要么就是外挂。不过,在国内游戏刚刚发展起来的那段时间,它们曾经扮演过很重要的角色,金山游侠和多玩盒子就是其中的典型代表。金山(0)人阅读时间:2024-07-01手写识别系统怎么安装(手写功能安装)
千彩手写识别系统(手写识别系统怎么安装)2018-08-30 09:33程序员小新人学习手写数字识别算法的设计与实现本文使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界..2024-07-0124口光口网络交换机(24口光口网络交换机功率)
如今,千兆交换机作为网络连接的主要设备,在网络建设中扮演着越来越重要的角色,被广泛应用于企业网络中,因此选择合适的千兆交换机尤为重要。目前,市面上存在众多适用于中小型企业的千兆交换机,例如飞速(FS)..2024-07-01卡扣式cpu风扇怎么拆 散热器卡扣太难拆了
cpu风扇怎么拆下来(卡扣式cpu风扇怎么拆)021-0百思特网8-13 23:31江渚小阁笔记本电脑用的时间长了,CPU风扇的出风口会沾上灰尘;如果所处的环境灰尘较多的话,风扇口会积很厚的灰尘,甚至..2024-07-01预防火灾常识(预防火灾常识简短文字)
最佳答案正确使用电器设备,家庭中不乱接电源线,不超负荷用电;学生宿舍中不私拉电线,不用大功率电器。及时清理家中的可燃物,防止发生自燃。电熨斗、电吹风等不使用时,必须切断电源。蚊香应远离床沿和窗帘位置放置。外出前需要关闭燃气灶等设施,以免发生意外。吸烟后应将烟头熄灭后再丢弃。..2024-07-01